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The fact that, for neutral atoms, the interelectronic repulsion energy I is a constant fraction (~ 1/3)
of the total energy E is discussed in the light of several approximate energy formulas, theoretical and
empirical. We then derive the asymptotic form of the non-relativistic energy of a neutral atom as

1 1/3 9 3 1/3
E=—kZ"? au. (Z=atomic number) with k probably between 7(;) and H(?) . For

6 < Z <90, the actual energies are in fact between these limits, while the formula implies I/E =1/3.
The ratio of interelectronic repulsion energy to total electronic energy for ions and molecules is derived.

Mit der Hilfe einiger theoretischer und empirischer Naherungsformeln wird die Tatsache disku-
tiert, daB fiir neutrale Atome die zwischenelektronische AbstoBungsenergie I stets etwa 1/3 der elek-
tronischen Gesamtenergie E betragt. Die asymptotische Form der nicht relativistischen Energie eines
neutralen Atoms wird dann zu E= —kZ'/® abgeleitet, wobei Z die Kernladungszahl ist und k wahr-

1 1/3 9 1/3 )
scheinlich zwischen 5(;) und g7 (7> liegt. Fiir 6 £Z <90 liegen die berechneten Energien

tatsichlich innerhalb dieser Grenzen. Gleichzeitig enthilt diese Formel das Verhdltnis I/E=1/3.
Ferner wird das Verhiltnis von I zu E fir Ionen und Molekiile abgeleitet.

Nous discutons le fait que, pour les atomes neutres, I'énergie de répulsion interélectronique I est
toujours a peu pres 1/3 de énergie électronique totale E. Aprés avoir examiné le rapport entre ce fait
et certaines formules théoriques et empiriques pour I'énergie, nous démontrons que la forme
asymptotique de I'énergie est E= —kZ"? u.a. (Z=charge du noyau), avec k probablement entre

1/ 3\ 9 (313
?<7> et H(?) . Les énergies calculées pour 6 < Z <90 sont en accord avec cette régle. La

formule E= —kZ"? conduit aussi & I/E=1/3. Nous démontrons également le rapport entre I et E
pour les ions et les molecules.

Several years ago, Fraga [1] pointed out an interesting regularity in atomic
structure calculations. For the ground and lower excited states of neutral atoms
and negative ions, the expectation value of the interelectronic interaction is in a
constant ratio to the total electronic energy, the magnitude of the ratio being
slightly above 1/3, which was suggested as a theoretical value. Gaspar [2] has
given some further discussion of this point. Actually, the energies and expectation
values for all terms from a given configuration differ only slightly, so if the rule is
fulfilled approximately for the ground term, it is automatically fulfilled for the
others. Thus, we shall discuss only the lowest term for a configuration in what
follows.

Writing the total energy as E, the interclectronic repulsion energy as I, the
kinetic energy as T, and the electron-nuclear attraction energy as A, we have

E=I+A+T )
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and, by the virial theorem,
T=—E=—1/2(I+A4). 2

From these relations, one sees that I/E = —1/3 implies A/E = 7/3. The Hellmann-
Feynman Theorem [3, 4] gives

A=Z(@E/0Z)y 3)

where Z is the nuclear charge and the number of electrons N is to be held constant
in the differentiation. )

We also note that, for N fixed, the energy can be written as a function of Z in
the well-known expansion [4]

E=W,Z>+ W Z+Wy+W_Z 1+ ... ()

Here, W, is the sum of the eigenvalues of the N lowest hydrogenic orbitals, and W,
is the expectation value of 3 1/r;; for the determinantal wavefunction formed from
these (in the case of degeneracy, W, is a root of a secular equation). Thus, W, is
necessarily negative and W, necessarily positive. From Egs. (4) and (3), one has
AJE =2—(W,/W,) Z~* + terms in Z~ 2, suggesting A/E something above 2. Now
Z W, is essentially I and Z2W, is T + 4, if we can neglect contributions contained
in Wy, so (W,/W,)Z7* ~I/(T+ A). Using the virial theorem, Eq. (2), we obtain
the following relation for a = A/E:

0=2—Q2—a)(~1+0).

The solution is « =2, so the deviation of the true ratio from 2 is a measure of the
importance of the second-order terms in W,,.

Now if E(Z) for N fixed goes as CZ", (3) gives A=rE, and I =(2—r) E, etc.
Fraga [1] noted that the Thomas-Fermi theory [5] for neutral atoms predicts

E=—07687Z"% au. )

which, with (3), gives A/E =7/3. We shall ignore the fact that this and subsequent
formulas refer to E(Z) for N = Z and not for fixed N, and return to this point later.
The Thomas-Fermi theory cannot, however, be used to justify the constancy of
A/E, I/E, etc., since the formula (5) is known to be in error by 20-30%, even for
the heavier atoms. Further, the theory gives no stable solutions for negative ions.
The errors are due to neglect of exchange and to the breakdown, for distances very
close to and very far away from the nucleus, of the assumptions of the theory. The
breakdown close to the nucleus, where the potential energy is large, is most serious
for energy calculations.

Scott [6] has shown how Eq. (5) may be corrected for exchange and the rapidly
varying (Coulombic) field near the nucleus. His formula gave quite good agreement
with experimentally and theoretically determined energies. It was further modified
by March and Plaskett [7], who gave:

E(au)= —0.7687 Z73 +1 22 — 0.266 Z°7* + 0(Z*?), ©)
in even better agreement. By differentiation of (6)
Z dE 7
L8 _ ' o7z 18— ~2/3 4 ...
E 7 3 +0.217 03727 +

The ratio A/E should then be slightly above 7/3, as Fraga’s tables show.
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In fact Foldy [8], considering the energies of neutral atoms calculated by the
Hartree method, concluded thata good fit could be obtained by E= —13.6 Z'?/°¢V.
Scott [6] has discussed the relation between his and Foldy’s formulas. Now the
latter implies A/E =12/5 and I/E = —2/5, which is in better agreement with the
numbers in Fraga’s Tables 1 and 2 than 7/3 and —1/3.

We will now show that, for neutral atoms, the leading term in E(Z) goes as
783, independently of the Thomas-Fermi theory. First, for large atomic number,
the coefficient W, in the expansion (4) goes as Z'/®. We can write

Walau) =} q,(—1/2n5)

where g, is the occupation number of the orbital o with principal quantum number
n, $0 Y g,=N. We can get an idea of the overall E vs. N dependence of W, by

considering only closed shells, where orbitals with principal quantum number n,
up to and including n,, are filled. Thus, going over to sums over principal quantum
numbers,

Wyau)=—4Y 2n2/n? = —n, (7)
and "
: N=Y 2n?=4in,(n,+1)2n,+1) (8)

Ny

where we have used
n—1
Z 2Q1+1)=2n?.

=1

Now (8) can be inverted to give the asymptotic series

3\1/3 1 2)1/3
My = <7> VAL —~~2—Z°+%Z”/3+0(2_5”)- ©)

Thus W, goes as Z'°, which makes E go as Z7/? for neutral atoms (N = Z), but
with a coefficient fifty per cent higher than that of (5), which is already much too
high. As mentioned above, Z W,, which is of opposite sign, must also go as Z*/3.
Géspar [2] also indicated that W,/Z and W, had the same Z-dependence. He
estimated it as Z°*° from results of direct calculation for atom with Z >3 and
noted that the exponent decreased when systems of higher atomic number were
considered (for atoms with Z > 10, he gives Z°%38%),

If we again take Z> W, as approximately T+ A4 and Z W, as approximately I,
the fact that the ratios of T/E, A/E, and I/E are constants independent of Z means
the terms are proportional. Putting ZW, =aZ"/3, we must have —(3/2)'/3 +«
= —0.769 to agree with the Thomas-Fermi result, or « =0.386, which means
I(T+ Ay= —0.334. For A/E =17/3, this would be —1/4, while A/E = 12/5 makes
this —2/7. Deviations again indicate the importance of W, terms. Note that the
virial theorem applies to W,, and gives T= —1 4 in this approximation.

We now go on to a direct estimation of W,. For a closed shell, the zero-order
function is non-degenerate, simplifying the calculation. We ignore exchange,
which comes in as a lower power of Z in the Thomas-Fermi theory and as a lower
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power of the density for the electron gas. Then

=23 T ey T e+

n=1 l;<n; n;=1 lj<n;

(10
X §dry dry g () i )P 75 (10

where u,,(r) is the hydrogenic radial function and r., is the greater of r; and r,. Let
us first consider terms for n; <n;. The most probable value of r for u,,(r) increases

with n, indeed
§ lug()>r~tdr=n"2,

and {r),, > {r),, for n>n’ independently of l and ! as long as n < 7. Then we may
putr, =ry, and

fdrydr, |un,-z,-("1)|2 |unj1j(”2)|2 rst=Jdr, |un,-1i("1)|2 rit=n?,

so the terms with n’ > n; contribute

nym ni—1

2 Y YL+ Y@L+ )n?

ni=1 n;=1 Li<n; lj<n;

Ny mi—1 .

=2) Ym=73 ) m=1)m)en-1

n=1

and likewise for the terms with n; <n; For the remaining terms (n;=n;) in W,
we assume that for [;>[;r, may be put equal to r; in the integral of Eq. (10),
although this approximation is expected to be less accurate than that made above
for n; # n;. Then

fdr erIun.-l,'(rl)|2 lun,-zj(rz)|2 rat=n?
independently of j. If we now also use this for the case [;=1, we may sum the
contribution of the n;=n; terms to W,:

nm ni—1 ni—1 fy ni—1

2y Y@L+ Y @L+Dn2=Y Y 2QL+1)=N. (11)

m=1 l;=1 =1 ;=1

For the neutral atom, these terms give a contribution to the energy going as Z2.

. . 1 1/ 3\3 N
The leading term in Z from W, is then —nj = —(—) Z*B, contributing

3 212

1 /3)\¥ . . . S
> <?> Z773 to the energy. Combining this with the contribution of W,, we have

1[/3\'
E=— ~<_> ZMP=—156Z"7 eV. (12a)

We do not anticipate that the approximations used are sufficiently good to
predict higher order terms in Z in the expansion. The magnitude of E from (12a)
is generally too low, since we have not considered W,, while our previous argu-
ments show that it contains an appreciable term in Z7/3. The calculation of W,
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presents much more difficulty, as it is a sum of pair energies, each of which is
obtained from solution of a two-electron inhomogeneous differential equation.
The structure and calculation of W, has been discussed by Layzer and co-
workers [9].

Layzer [9b] has also proposed a simple screening theory which we use, first
in extremely crude form, to estimate the Z7/* term in W,. We suppose that the
effect of interelectronic repulsion can be approximated by imagining all the elec-
trons to be in hydrogenic orbitals with some effective principal quantum number
7 and some effective charge Z —5Z, so 5 is a screening constant. Then we equate
W,Z*+ W,Z+ W, to the hydrogenic formula —N(Z —3Z)?/(2n% and put
W,= —n,, and W, =in}. We find N/i*=2n,,/Z* and 5= Ln3, so

Wy= —N5*Z?/2n%) = —nl/36.
Adding this to (12a), we obtain

9 /3\'3
E:—T6—<7> Z'R= 175277 eV (12b)

which is in fairly good agreement with the experimental values [8]. The next
approximation is to consider each principal quantum number separately. The
energy difference between the system with all shells through the n-shell, and with
all shells through the (n — 1)-shell, filled (keeping leading terms only) is supposed
to be given by the energy of 2n? non-interacting electrons with effective principal
quantum number 7, moving in the field of a nucleus of effective charge Z{1 —5,).
Equating the two expressions we find 7, and 5,, and then the contribution to
Wy, Wo,:

—Z*4+ 1Z(@4n® + Wy, = —(n/n,)* (Z*> — 25,Z%+527%).
Thus 7, =n, 5,=2r>Z, and W,,= — §n°, so that

" 4 (n! né >
0 ,,; 0 9(7 2

which, added to (12a), gives

E——i £l " Z3=-20022Z"7 eV (12¢)
o 141\2 - '

Results from bare-nucleus perturbation theory calculations indicate that the
formula (12a), which includes zero-order and first-order terms, should be too
high, while (12¢), in which second-order terms appear, should be too low, but
closer to the correct value. In Fig. 1, formulas (12a) and (12¢) are compared with
experimental values given by Foldy [8] for neutral atoms with Z =6, 7, 8, 10, 20,
30, 40, 50, 60, 70, 80, and 90. The energies all fall between the two curves.

Actually, it is a little surprising that such good accuracy is obtained from the
Z77 terms in the energy, since the coefficient of the terms in Z2 need not be
negligible, and Z~'/* goes from 4 to £ as Z goes from 10 to 100. The accuracy of
formula (12¢) implies cancellation between different contributions to the Z? term.
For example, the term in W, due to interactions of electrons in the same shell
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Fig. 1.Energy of neutral atoms (negative valuein atomic units) vs.atomicnumber. Pointsare Hartree results
given by Foldy [8], upper line is Eq. (12¢), lower line is Eq. (12a)

(Eq. (11)) is exactly cancelled by a term of the same order in Z in 3nj, with n,,
given by Eq. (9).

As mentioned above, in using the formulas for E(Z) for neutral atoms in (3),
we are ignoring the difference between dE/dZ along the line N=Z in the N,
Z plane and along the line N = constant. We shall denote the former quantity by
(dE/dZ), .- The difference between these two quantities is essentially an ioniza-
tion potential, and it is well known that the first ionization potential of a neutral
atom is essentially Z-independent and thus becomes small compared to the total
energy and (dE/dZ),eypa- Thus our replacing (QE/0Z)y by (dE/dZ),eyya WS
justified. Specifically, we have

0E { 0E
(dE/dZ)peuirar = (6—N)Z + (0—Z>N

Now (0E/0N), is somewhere between the ionization potential and the electron
affinity of the neutral atom of atomic number Z, and may be neglected. Alter-
natively, note that E as a function of Z for N fixed is given by Eq. (4), with
3 1/3 L 1 3 1/3 4 1 3 1/3 5
W2:—<7) N/3,W1=?<7> N/, and W0:—7<7> N7/ Thus
we can write directly
A Z(('}E) 222Wo+ZW, 1

o= —— = —

T E E

0Z )y ZPW,+ZW, +W, 3

The relative smallness of ionization potentials implies that the dependence of
energy on Z and its consequences for the partitioning of the energy should hold
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approximately for negative and positive ions as well as for neutral atoms. The
energy of the singly negative ion differs from that of the neutral by an electron
affinity, that of the singly positive ion from a neutral by an ionization potential.
Ionization potentials being generally larger than electron affinities, the ration A/E
for ions of a single negative charge should be closer to the ratio for neutral atoms
than should A/E for ions of single positive charge.

If one now considers ions with more than one positive charge, the ratio A/E
should get further from the neutral-atom ratio. As successive ionization potentials
increase, the formula will eventually break down, but it is the relative size of the
net charge to Z that matters. In our expansion of W, and W, in powers of Z~!/3,
we see that changing Z to Z + g still produces an expansion with leading term
going as Z /3. Successive electron affinities decrease to zero — the multiply charged
negative ions are marginally stable and the addition of an electron essentially
does not affect the energy or any of its components. In general, we expect removal
of an electron will decrease |I| relative to |4], so —I/E will decrease from its
neutral ion value. For negative ions the reverse is true.

In Table 1, we have given the energies and the ratios — I/E for a series of atoms
and ions calculated by Czyzak [10]. The numbers used were from the papers of
Czyzak [10] and Clementi [11]. For the neutrals —I/E is ~0.38 (2/5 or 1/3
predicted from Z'%/5 or Z7/3); for singly positive ions, —I/E ~0.37, and —I/E
decreases with increasing charge; for negative ions, —I/E is about 0.4.

Table 1. Energy quantities for atoms and ions

System —E(a.u) T(a.u) I{a.u.) —I/E
P(*S) 340.7 340.7 131.3 0.385
P (*P) 340.3 340.3 125.1 0.368
P *(*P) 339.6 339.6 119.2 0.351
PTTT(ES) 338.6 338.6 113.5 0.335
S= 397.5 397.5 166.3 0418
S~ 397.5 397.5 1589 0.400
S 397.5 397.5 151.6 0.382
St 397.2 3972 144.5 0.363
s** 396.3 396.3 136.4 0.346
St 395.1 395.1 1301 0.329
gre 393.4 393.4 123.6 0.314
cr 459.6 459.6 181.6 0.395
Cl 459.5 459.5 175.1 0.381
crr 459.0 459.0 167.4 0.365
a 4582 458.2 157.1 0.343
cr 456.8 456.8 148.6 0.325
1 454.9 4549 139.7 0.307
Ccres 452.4 4524 132.1 0.292
A 526.8 526.8 201.4 0.382
A* 526.3 526.3 193.6 0.368
ATF 525.3 525.3 184.1 0.350
At 523.9 523.9 174.3 0.333
AT* 521.7 521.7 164.5 0.315
A3 519.0 519.0 155.0 0.299
A'S 515.7 515.7 1442 0.279

12 Theoret. chim. Acta (Berl) Vol. 15
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Like ionization potentials, binding energies of diatomic molecules are small
compared to total energies. The binding energy (BE) is the difference between the
internuclear repulsion V,, and the change in the electronic energy (=A+ T+ 1)
on bonding. At the equilibrium nuclear configuration, the virial theorem holds
[12]. Writing subscripts m for the molecule and 1 and 2 for the atoms to which it
dissociates, we have A; + 1, =2E;, A, +1,=2E,,and A,,+1I,+V,,=2E,, with
Via=Z,Z,/R. Using the Hellmann-Feynman Theorem,

Am =Zla(Em - Vnn)/azl +Z26(Em_ Vnn)/aZZ s (13)

where here and in what follows all partial differentiations are performed with the
number of electrons constant. Now E,, = E, + E, — BE (taking BE to be positive),
and 0E,/0Z,=0E,/0Z, =0, while ¢(BE)/0Z,; is very small, as we have recently
discussed [13]. Then (13) yields

A~ =2V, +A4,+4,,

where we have used (3). If A =kE for atoms (k is between 7/3 and 12/5), we now
have

2Em _Im_ I/nnx’ —ZVnn+k(E1 +E2)

and neglecting the term BE/E,,,
I,—V.~(2—-kE, (14)

Eq. (14) makes the ratio of I, — V,,, to E,, the same as the ratio of I to E for atoms,
about 0.38. One way of expressing this is to say that the internuclear repulsion
energy is closely equal to the change in interelectronic repulsion energy on mole-
cule formation.

We give several examples of the validity of (14) in Table 2. BeO and N, present
no surprises, but we note that the rule holds for HF, in spite of the fact that A =2E
for the H atom. This is because the energy of H will be small compared to the
energy of the other atom for hydrogen-containing molecules. For a polyatomic
such as NH,Cl, Eq. (14) is valid provided that the atomization energy is small
compared to the total energy. Because A~ kE for atomic ions, the fact that a

Table 2. Energy quantities for sundry molecules

Molecule and Totalenergy Interelectronic  Internuclear .-V, Ref.
configuration E,ina.u. repulsion J repulsion V,, E,
BeO,R=24384q, — 89.448 47.431 13.127 0.384 2
N,, R=2.0132 4, —108.996 62.041 24.339 0.346 b
HF, R=1.73304a, —100.258 45.094 5.193 0.398 ¢
NH,C], case D-5 —515.831 248.117 51.297 0.382 d
N3, R=2.0385q, —108.408 56.376 24,037 0.298 b
SH™,R=2.551aq, —398.146 163.668 6.272 0.395 e

2 Yoshimine, M.: J. chem. Physics 40, 2970 (1964).

® Cade, P. E., K. D. Sales, and A. C. Wahl: J. chem. Physics 44, 1973 (1966).
¢ Bender, C. F., and E. R. Davidson: J. chem. Physics 47, 360 (1967).

¢ Clementi, E.: J. chem. Physics 46, 3851 (1967).

¢ Cade, P. E.: J. chem. Physics 47, 2390 (1967).
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molecule dissociates into ions should not change the ratio (I,,— V,,)/E,, much.
The result for N is a little surprising: it may indicate that 6(BE)/0Z, is not small
for ions. Good calculations are not available for heavier molecules, but (14) is
expected to hold more exactly for these.

It is hoped that the considerations discussed above may be of some use in
explaining the regularities in the partitioning of the energy in atoms and molecules.
We have also derived the asymptotic form of the Z-dependence of the energy
of neutral atoms [14] as Z7, and have estimated the coefficient of this term,
giving a formula for the energy that is apparently approximately valid, even
for Z below 10, which is quite unexpected. From the formula E=kZ"/3 the
results on the partitioning of the energy follow, as we have indicated.
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