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The fact that, for neutral atoms, the interelectronic repulsion energy I is a constant fraction (~ 1/3) 
of the total energy E is discussed in the light of several approximate energy formulas, theoretical and 
empirical. We then derive the asymptotic form of the non-relativistic energy of a neutral atom as 

1(3 1, 9 (_3y, 
E= - k Z  7/3 a.u. (Z=atomic number) with k probably between ~ \ f f /  and 14 \ 2 /  . For 

6 < Z < 90, the actual energies are in fact between these limits, while the formula implies I/E= 1/3. 
The ratio of interelectronic repulsion energy to total electronic energy for ions and molecules is derived. 

Mit der Hilfe einiger theoretischer und empirischer Niiherungsformeln wird die Tatsache disku- 
tiert, dab ffir neutrale Atome die zwischenelektronische AbstoBungsenergie I stets etwa 1/3 der elek- 
tronischen Gesamtenergie E betriigt. Die asymptotische Form der nicht relativistischen Energie eines 
neutralen Atoms wird dann zu E = - k Z  1/3 abgeleitet, wobei Z die Kernladungszahl ist und k wahr- 

1 ( 3 " ]  1/3 9 / ' 3 \  1/3 
scheinlich zwischen ~- \ ~ /  und ~ -  ~ - )  liegt. F/ir 6 < Z < 90 liegen die berechneten Energien 

tats~ichlich innerhalb dieser Grenzen. Gleichzeitig enth~ilt diese Formel das Verhaltnis 1/E = 1/3. 
Ferner wird das Verh~iltnis von 1 zu E fiir Ionen und Molekiile abgeleitet. 

Nous discutons le fait que, pour les atomes neutres, l'6nergie de r6pulsion inter61ectronique I est 
toujours/~ peu pr6s 1/3 de l'6nergie 61ectronique totale E. Apr6s avoir examin6 le rapport entre ce fait 
et certaines formules th6oriques et empiriques pour l'6nergie, nous d6montrons que la forme 
asymptotique de l'6nergie est E =  - k Z  7/3 u.a. (Z= charge du noyau), avec k probablement entre • (3&l. 
2 \ 2 / et 14 \ 2 / . Les 6nergies calcul6es pour 6_< Z_< 90 sont en accord avec cette r+gle. La 

formule E = - k Z  v/3 conduit aussi h / / E =  1/3. Nous d6montrons 6galement le rapport entre I e t  E 
pour les ions et les molecules. 

Seve ra l  years  ago ,  F r a g a  [1] p o i n t e d  o u t  an  in t e r e s t i ng  r egu la r i t y  in a t o m i c  

s t r u c t u r e  ca lcu la t ions .  F o r  the  g r o u n d  a n d  l o w e r  exc i ted  s ta tes  of  neu t r a l  a t o m s  

a n d  n e g a t i v e  ions,  the  e x p e c t a t i o n  va lue  o f  t he  i n t e r e l e c t r o n i c  i n t e r a c t i o n  is in a 

c o n s t a n t  r a t i o  to  t he  t o t a l  e l e c t ron i c  energy ,  the  m a g n i t u d e  of  the  r a t io  be ing  

s l ight ly  a b o v e  1/3, wh ich  was  sugges t ed  as a t heo re t i c a l  value.  Gfisp/ tr  [2] has  

g iven  s o m e  fu r the r  d i s cus s ion  o f  this  po in t .  Ac tua l ly ,  the  energ ies  a n d  e x p e c t a t i o n  

va lues  for all  t e r m s  f r o m  a g iven  c o n f i g u r a t i o n  differ o n l y  sl ightly,  so if  the  ru le  is 

fulfi l led a p p r o x i m a t e l y  for  the  g r o u n d  t e rm,  it is a u t o m a t i c a l l y  fulfi l led for the  

others .  Thus ,  we shal l  d iscuss  o n l y  the  lowes t  t e r m  for  a c o n f i g u r a t i o n  in w h a t  
fol lows.  

W r i t i n g  the  t o t a l  e n e r g y  as E,  the  i n t e r e l e c t r o n i c  r e p u l s i o n  ene rgy  as I,  the  

k ine t i c  ene rgy  as T, and  the  e l e c t r o n - n u c l e a r  a t t r a c t i o n  e n e r g y  as A, we h a v e  

E = I + A +  T (1) 
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and, by the virial theorem, 

T- -  - E = - 1/2(I + A). (2) 

From these relations, one sees that I /E = - 1/3 implies A/E = 7/3. The Hellmann- 
Feynman Theorem [3, 4] gives 

A = Z(~EIOZ),, (3) 

where Z is the nuclear charge and the number of electrons N is to he held constant 
in the differentiation. 

We also note that, for N fixed, the energy can be written as a function of Z in 
the well-known expansion [--4] 

E =  W2 z z  + W l Z  + W o+ W_I z - x  + . . . .  (4) 

Here, 1412 is the sum of the eigenvalues of the N lowest hydrogenic orbitals, and W1 
is the expectation value of ~ 1/rij for the determinantal wavefunction formed from 
these (in the case of degeneracy, WI is a root of a secular equation). Thus, W2 is 
necessarily negative and W1 necessarily positive. From Eqs. (4) and (3), one has 
A/E = 2 - ( W 1 / W 2 )  Z - 1  -[- terms in Z -2, suggesting A/E something above 2. Now 
Z W 1 is essentially I and Z 2 W 2 is T + A, if we can neglect contributions contained 
in Wo, so (W~/Wz)Z -1 ~ 1 / (T+A).  Using the virial theorem, Eq. (2), we obtain 
the following relation for ~ = A/E: 

c~ = 2 -  ( 2 -  c0/(-  1 +~) .  

The solution is e -- 2, so the deviation of the true ratio from 2 is a measure of the 
importance of the second-order terms in Wo. 

Now if E(Z) for N fixed goes as CZ',  (3) gives A = rE, and I = ( 2 -  r)E, etc. 
Fraga [-1] noted that the Thomas-Fermi theory [-5] for neutral atoms predicts 

E =  - 0 . 7 6 8 7 Z  7/3 a . u .  (5) 

which, with (3), gives A/E = 7/3. We shall ignore the fact that this and subsequent 
formulas refer to E(Z) for N = Z and not for fixed N, and return to this point later. 
The Thomas-Fermi theory cannot, however, be used to justify the constancy of 
A/E, I/E, etc., since the formula (5) is known to be in error by 20-30 %, even for 
the heavier atoms. Further, the theory gives no stable solutions for negative ions. 
The errors are due to neglect of exchange and to the breakdown, for distances very 
close to and very far away from the nucleus, of the assumptions of the theory. The 
breakdown close to the nucleus, where the potential energy is large, is most serious 
for energy calculations. 

Scott [-6] has shown how Eq. (5) may be corrected for exchange and the rapidly 
varying (Coulombic) field near the nucleus. His formula gave quite good agreement 
with experimentally and theoretically determined energies. It was further modified 
by March and Plaskett [,7], who gave: 

E(a.u.) = -0.7687 Z 7/3 + �89 Z 2 - 0.266 Z 5/3 + 0(Z4/3), (6) 

in even better agreement. By differentiation of (6) 

Z dE 7 
- + 0.217 Z -~/3 - 0.372 Z -2/3 + .... 

E dZ  3 

The ratio A/E should then be slightly above 7/3, as Fraga's tables show. 
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In fact Foldy [8], considering the energies of neutral atoms calculated by the 
Hartree method, concluded that a good fit could be obtained by E = - 13.6 Z ~ 2/5 eV. 
Scott [6] has discussed the relation between his and Foldy's formulas. Now the 
latter implies A l E  = 12/5 and I /E  = - 2 / 5 ,  which is in better agreement with the 
numbers in Fraga 's  Tables 1 and 2 than 7/3 and -1 /3 .  

We will now show that, for neutral atoms, the leading term in E(Z) goes as 
Z 7/3, independently of the Thomas-Fermi  theory. First, for large atomic number, 
the coefficient W 2 in the expansion (4) goes as Z 1/3. We can write 

Wz(a.u.) = ~ % ( -  1/2n~) 

where q, is the occupation number  of the orbital e with principal quantum number  
n~, so ~ q~ = N. We can get an idea of the overall E vs. N dependence of W 2 by 

considering only closed shells, where orbitals with principal quantum number  n, 
up to and including nm are filled. Thus, going over to sums over principal quantum 
numbers, 

W 2 ( a . u . l : _ � 8 9  2 z 2n~/n~ = - n,, (7) 
n~ 

and 
N = ~ 2n~ = �89 + 1)(2n,, + 1) (8) 

n~ 

where we have used 
n - 1  

2(21+ 1 ) = 2 n  2. 
l = l  

Now (8) can be inverted to give the asymptotic series 

nm = Z 1/3 - 1 Z ~  + - -  Z -1/3 + 0 ( Z - 5 / 3 ) .  (9) 
2 12 

Thus W2 goes as Z 1/3 which makes E go a s  Z 7/3 for neutral atoms (N = Z), but 
with a coefficient fifty per cent higher than that of (5), which is already much too 
high. As mentioned above, Z W1, which is of opposite sign, must also go as Z 4/3. 
Gfispfir [2] also indicated that W1/Z and W e had the same Z-dependence. He 
estimated it as Z ~176 from results of direct calculation for a tom with Z >_ 3 and 
noted that the exponent decreased when systems of higher atomic number  were 
considered (for atoms with Z > 10, he gives Z~ 

If we again take Z 2 W 2 as approximately T + A and Z W 1 as approximately I, 
the fact that the ratios of T/E,  AlE,  and I /E  are constants independent of Z means 
the terms are proportional.  Putting Z W  1 =o~Z 7/3, w e  must have - (3 /2)  1/3 + e  
= - 0 . 7 6 9  to agree with the Thomas-Fermi  result, or c~=0.386, which means 
I / ( T +  A ) =  -0.334.  For  A / E  = 7/3, this would be - 1 / 4 ,  while A / E  = 12/5 makes 
this - 2 /7 .  Deviations again indicate the importance of W 2 terms. Note that the 
virial theorem applies to W2, and gives T =  - � 8 9  in this approximation. 

We now go on to a direct estimation of W1. For  a closed shell, the zero-order 
function is non-degenerate, simplifying the calculation. We ignore exchange, 
which comes in as a lower power of Z in the Thomas-Fermi  theory and as a lower 
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power of the density for the electron gas. Then 

tlm nm 

W1=2 Z Z (21i+1) Z Z (21j+l)  

.i:1 l,<,i .j=~ l~<,j . (10) 
• I dr1 dr2 lu.,l,(rl)l 2 lu.~lj(r2)l 2 r ;  1 

where u,z(r ) is the hydrogenic radial function and r> is the greater of r~ and r 2. Let 
us first consider terms for nj < n~. The most probable value of r for Unt(r) increases 
with n, indeed 

S [Unt(r)[ 2 r- l  dr = n -2 , 

and ( r ) ,  l > ( r ) , ,  r for n > n' independently of I and l' as long as n < 7. Then we may 
put r> = rl, and 

S dr1 dr2 [u,,t,(rl)l z [U,jlj(re)l 2 r~. 1 = S dr1 [u,,t,(rjl 2 rl -z -- n/-2 , 

so the terms with n i > nj contribute 

"m hi--1 

2 Z Z Z (2li+1) Z (2 / j+ l )  n ;  2 
ni=l  n j=l  l~<ni lj<nj 

=2,.=1n~ .J~--n'-in 2 = 3-~1 "i~=l(ni_l)(ni)(2ni_l ) 

1 nZ(nm+ 1)(nm 1) 
6 

and likewise for the terms with n~ < nj. For the remaining terms (nl = hi) in W~, 
we assume that for li > lj r> m a y  be put equal to rl in the integral of Eq. (10), 
although this approximation is expected to be less accurate than that made above 
for ni -r hi. Then 

I dr1 dr2 lu,,l,(rx)l 2 lu.,li(rz)l z r; 1 = n? z 

independently of j. If we now also use this for the case l i -- l~, we may sum the 
contribution of the n~ =nj terms to W 1 �9 

tim hi--1 hi--1 nm hi--1 

2 E Z (2l ,+1) E (21j+l)n? 2= Z Z 2 ( 2 l , + 1 ) = N .  (11) 
. i = l  l i=l  / j = l  ni=l  l i=l  

For the neutral atom, these terms give a contribution to the energy going as Z 2. 1,   (373 
The leading term in Z from W1 is then ~-nm = ~- Z 4/a, contributing 

l ( 3 )X /3zT /a to theenergy .  CombiningthiswiththecontributionofW2, wehave 

1 (3 )1 /az7 /3  - 1 5 . 6 Z  7/3 eV (12a) E = - ~  = . 

We do not anticipate that the approximations used are sufficiently good to 
predict higher order terms in Z in the expansion. The magnitude of E from (12a) 
is generally too low, since we have not considered Wo, while our previous argu- 
ments show that it contains an appreciable term in Z ~/3. The calculation of Wo 
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presents much more difficulty, as it is a sum of pair energies, each of which is 
obtained from solution of a two-electron inhomogeneous differential equation. 
The structure and calculation of W0 has been discussed by Layzer and co- 
workers [9]. 

Layzer [9b] has also proposed a simple screening theory which we use, first 
in extremely crude form, to estimate the Z via term in W o. We suppose that the 
effect of interelectronic repulsion can be approximated by imagining all the elec- 
trons to be in hydrogenic orbitals with some effective principal quantum number  

and some effective charge Z - gZ, so g is a screening constant. Then we equate 
W 2 Z 2 + W 1 Z + W o  to the hydrogenic formula - N ( Z - ~ Z ) 2 / ( 2 - ~  2) and put 

= 1 4 We find N / - n  2 ---= 2n, , /Z  2 and g =  ~nm, so W z = - n m  and W 1 ~n m. 1 3 

W o = _ N~ 2 Z2/(2~ 2) = _ nV/36. 

Adding this to (12a), we obtain 

9 eV 
E -  16 (12b) 

which is in fairly good agreement with the experimental values [8]. The next 
approximation is to consider each principal quantum number  separately. The 
energy difference between the system with all shells through the n-shell, and with 
all shells through the (n - 1)-shell, filled (keeping leading terms only) is supposed 
to be given by the energy of 2n 2 non-interacting electrons with effective principal 
quantum number  g, moving in the field of a nucleus of effective charge Z(1 - g,). 
Equating the two expressions we find g, and g,, and then the contribution to 
w0, Wo.: 

- Z 2 +  �89 + Wo, = - (nN,) 2 (Z  z - 2g, Z 2 + g,ZZ2). 

Thus g, = n, g, = 2n3Z,  and Wo, = - 94--n 6, so that 

6 )  
w0= Z W o . = - 5 - . U - + Z - +  ' 

n = l  \ 

which, added to (12a), gives 

9 eV 
E =  14 

Results from bare-nucleus perturbation theory calculations indicate that the 
formula (12a), which includes zero-order and first-order terms, should be too 
high, while (12c), in which second-order terms appear, should be too low, but 
closer to the correct value. In Fig. 1, formulas (12a) and (12c) are compared with 
experimental values given by Foldy [8] for neutral atoms with Z = 6, 7, 8, 10, 20, 
30, 40, 50, 60, 70, 80, and 90. The energies all fall between the two curves. 

Actually, it is a little surprising that such good accuracy is obtained from the 
Z 7/3 terms in the energy, since the coefficient of the terms in Z 2 need not be 
negligible, and Z-1/3 goes from �89 to �89 as Z goes from 10 to 100. The accuracy of 
formula (12c) implies cancellation between different contributions to the Z 2 term. 
For example, the term in W 1 due to interactions of electrons in the same shell 
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Fig. 1. Energy of neutral atoms (negative value in atomic units) vs. atomic number. Points are Hartree results 
given by Foldy [8], upper line i s Eq. (12c), lower line is Eq. (12a) 

1 4 with nm (Eq. (11)) is exactly cancelled by a term of the same order in Z in ~nm, 
given by Eq. (9). 

As mentioned above, in using the formulas for E(Z) for neutral atoms in (3), 
we are ignoring the difference between dE/dZ along the line N = Z in the N, 
Z plane and along the line N -- constant. We shall denote the former quantity by 
(dE/dZ)neutral. The difference between these two quantities is essentially an ioniza- 
tion potential, and it is well known that the first ionization potential of a neutral 
atom is essentially Z-independent and thus becomes small compared to the total 
energy and (dE/dZ),eutral. Thus our replacing (OE/OZ) N by (dE/dZ)ne,tra I was 
justified. Specifically, we have 

Now (OE/#N)z is somewhere between the ionization potential and the electron 
affinity of the neutral atom of atomic number Z, and may be neglected. Alter- 
natively, note that E as a function of Z for N fixed is given by Eq. (4), with 

, 
W2= - N1/3' W1= -2 N 4/3, and W o = - ~ -  

we can write directly 

A Z f ~ E ' ~  2Z2W2+ZW1 7 
a = E - E  ~-Z N z2w2 + z w l  + Wo 3 

The relative smallness of ionization potentials implies that the dependence of 
energy on Z and its consequences for the partitioning of the energy should hold 
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approximately for negative and positive ions as well as for neutral atoms. The 
energy of the singly negative ion differs from that of the neutral by an electron 
affinity, that of the singly positive ion from a neutral by an ionization potential. 
Ionization potentials being generally larger than electron affinities, the ration AlE 
for ions of a single negative charge should be closer to the ratio for neutral atoms 
than should AlE for ions of single positive charge. 

If one now considers ions with more than one positive charge, the ratio AlE 
should get further from the neutral-atom ratio. As successive ionization potentials 
increase, the formula will eventually break down, but it is the relative size of the 
net charge to Z that matters. In our expansion of W2 and W~ in powers of Z-~/3, 
we see that changing Z to Z + q still produces an expansion with leading term 
going as Z 7/3. Successive electron affinities decrease to zero - the multiply charged 
negative ions are marginally stable and the addition of an electron essentially 
does not affect the energy or any of its components. In general, we expect removal 
of an electron will decrease [II relative to IA[, so -1/E will decrease from its 
neutral ion value. For negative ions the reverse is true. 

In Table 1, we have given the energies and the ratios - I / E  for a series of atoms 
and ions calculated by Czyzak [10]. The numbers used were from the papers of 
Czyzak [10] and Clementi 1-11]. For the neutrals -I /E is ~0.38 (2/5 or 1/3 
predicted from Z 12/5 or Z7/3); for singly positive ions, -I/E~0.37, and -I/E 
decreases with increasing charge; for negative ions, -I /E is about 0.4. 

Table 1. Energy quantities for atoms and ions 

System - E(a.u.) T(a.u.) I(a.u.) - I/E 

p(4S) 340.7 340.7 131.3 0.385 
p-(3p) 340.3 340.3 125.1 0.368 
p++(2p) 339.6 339.6 119.2 0.351 
P+++(1S) 338.6 338.6 113.5 0.335 

S- 397.5 397.5 166.3 0.418 
S- 397.5 397.5 158.9 0.400 
S 397.5 397.5 151.6 0.382 
S § 397.2 397.2 144.5 0.363 
S ++ 396.3 396.3 136.4 0.346 
S +++ 395.1 395.1 130.1 0.329 
S +4 393.4 393.4 123.6 0,314 

C1- 459.6 459.6 181.6 0.395 
C1 459.5 459.5 175.1 0,381 
C1 + 459.0 459.0 167.4 0,365 
CI-+ 458.2 458.2 157.1 0.343 
C1 ++§ 456.8 456.8 148.6 0.325 
C1.4 454.9 454.9 139.7 0.307 
C1 + 5 452.4 452.4 132.1 0.292 

A 526.8 526.8 201.4 0,382 
A + 526.3 526.3 193.6 0.368 
A T+ 525.3 525.3 184.1 0.350 
A +++ 523.9 523.9 174.3 0.333 
A +4 521.7 521.7 164.5 0.315 
A +5 519.0 519.0 155.0 0.299 
A +6 515.7 515.7 144.2 0.279 

12 Theoret. chim. Acta (Berl.) Vol. 15 
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Like ionization potentials, binding energies of diatomic molecules are small 
compared to total energies. The binding energy (BE) is the difference between the 
internuclear repulsion V., and the change in the electronic energy (= A + T + I) 
on bonding. At the equilibrium nuclear configuration, the virial theorem holds 
[12]. Writing subscripts m for the molecule and 1 and 2 for the atoms to which it 
dissociates, we have A 1 + 11 = 2Ei, A 2 + I 2 = 2E2, and A,, + I,, + V,, = 2Er,, with 
V.n = Z I Z z / R .  Using the Hellmann-Feynman Theorem, 

A m = Z ~ ( E . ,  - V.,)/t~Z~ + ZEO(E,. - V , , ) / ~ Z e ,  (13) 

where here and in what follows all partial differentiations are performed with the 
number of electrons constant. Now Em= E1 + E 2  - -  BE (taking BE to be positive), 
and t~gl/OZ 2 =-6~gE/~Zl = 0,  while O(BE)/t3Z i is very small, as we have recently 
discussed [13]. Then (13) yields 

A , ~  - 2 V , , +  A 1 + A 2 ,  

where we have used (3). If A = k E  for atoms (k is between 7/3 and 12/5), we now 
have 

2Era-I~- V..~ -2V.. + k(E~ +E2) 

and neglecting the term BE/Em, 

I , .  - V . .  ,~ (2 - k)  E , ,  (14 )  

Eq. (14) makes the ratio of I,, - V,,  to E,, the same as the ratio o f / t o  E for atoms, 
about 0.38. One way of expressing this is to say that the internuclear repulsion 
energy is closely equal to the change in interelectronic repulsion energy on mole- 
cule formation. 

We give several examples of the validity of (14) in Table 2. BeO and N2 present 
no surprises, but we note that the rule holds for HF, in spite of the fact that A -- 2E 
for the H atom. This is because the energy of H will be small compared to the 
energy of the other atom for hydrogen-containing molecules. For a polyatomic 
such as NH4C1, Eq. (14) is valid provided that the atomization energy is small 
compared to the total energy. Because A ~ - k E  for atomic ions, the fact that a 

Table  2. Energy quantities for sundry molecules 

Molecule  and  Tota l  energy In tere lec t ronic  In te rnuc lear  I,, - Vn, 

conf igurat ion Em in a.u. repuls ion  I repuls ion  V,, E,, 

Ref. 

BeO, R = 2.438 ao - 89.448 47.431 13.127 0.384 a 
N2, R = 2.0132 a o - 108.996 62.041 24.339 0.346 b 
HF,  R = 1.7330 a 0 - 100.258 45.094 5.193 0.398 c 
NH4C1, case D-5 - 515.831 248.117 51.297 0.382 d 
N~, R = 2.0385 a o "108 .408  56.376 24.037 0.298 b 
SH-,  R = 2.551 ao - 3 9 8 . 1 4 6  163.668 6.272 0.395 e 

a Yoshimine,  M.: J. chem. Physics 40, 2970 (1964). 
b Cade, P. E., K. D. Sales, and  A. C. Wahl :  J. chem. Physics  44, 1973 (1966). 
c Bender, C. F., and  E. R. Dav idson :  J. chem. Physics  47, 360 (1967). 
a Clementi ,  E.: J. chem. Physics  46, 3851 (1967). 
e Cade, P. E.: J. chem. Physics 47, 2390 (1967). 
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molecule dissociates into ions should not change the ratio (Ira--V,,)/Em much. 
The result for N + is a little surprising: it may indicate that 6(BE)/OZi is not small 
for ions. Good calculations are not available for heavier molecules, but (14) is 
expected to hold more exactly for these. 

It is hoped that the considerations discussed above may be of some use in 
explaining the regularities in the partitioning of the energy in atoms and molecules. 
w e  have also derived the asymptotic form of the Z-dependence of the energy 
of neutral atoms [141 as Z 7/3, and have estimated the coefficient of this term, 
giving a formula for the energy that is apparently approximately valid, even 
for Z below 10, which is quite unexpected. From the formula E = k Z  v/3, the 
results on the partitioning of the energy follow, as we have indicated. 
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